# Curve Sketching

## Stationary Points

A **stationary point** is the place on a graph where the tangent to the curve is horizontal

- ie the
**gradient**equals zero.

.

The stationary points for any function can be found by making the derivative equal to zero.

- ie we want $\dfrac{dy}{dx} = 0$

.

## Types of Stationary Point

There are 3 types of stationary point

- . Local Minimum
- . Local Maximum
- . Stationary Point of Inflection

- Local Minimums and Local Maximums are also called turning points.
- The gradient "turns" from positive to negative (or negative to positive) on each side of the turning point.

.

In the graph shown here:

**A**is a local minimum**B**is a stationary point of inflection**C**is a local maximum

**Note:** The point **A** is not the absolute minimum value of the graph. It is only a minimum in the area local to the stationary point. In the same way, **C** is not the absolute maximum value of the graph.

**Note:** The point of inflection at **B** is the point on the graph where the gradient changes from concave down to concave up. In other words, the gradient was decreasing as it approached B and after B the gradient begins increasing.

**Note:** There are also two **non-stationary points of inflection** on this graph (not marked) where the concavity changes. One is between A and B, the other is between B and C. At each of these points the gradient stops increasing, achieves its **steepest** point and then starts decreasing.

.

## Summary

- A
**stationary point**occurs where the gradient function has an x-intercept (ie derivative is zero).- A
**local minimum**occurs where the gradient moves from negative to positive - A
**local maximum**occurs where the gradient moves from positive to negative

- A
- A
**stationary point of inflection**occurs when the gradient function has a turning point on the x-axis. - A
**non-stationary point of inflection**occurs when the gradient function has a turning point that is not on the x-axis.

.

## Determining the Nature of a Stationary Point

- Once you have located the x-coordinate of a stationary point,
- the nature of the stationary point can be determined by constructing a gradient table.
- This involves finding the derivative (gradient) a small step on each side of the stationary point.

#### Example 1

Find the coordinates and nature of the stationary point in the function $y = x^2 - 4x + 1$

.

**Solution**

… … Find the derivative:

… … $y = x^2 - 4x + 1$

… … $\dfrac{dy}{dx} = 2x - 4$

.

… … Set the derivative to zero

… … $\dfrac{dy}{dx} = 2x - 4$

… … $2x - 4 = 0$

… … $2x = 4$

… … . $x = 2$

.

… … Find y-coordinate

… … $y = x^2 - 4x + 1 \qquad substitute \; x = 2$

… … $y = (2)^2 - 4(2) + 1$

… … $y = 4 - 8 + 1$

… … $y = -3$

.

… … Now construct gradient table for values close to $x = 2$

… … Inspection of the third row reveals that:

… … the stationary point is a local minimum

… … Coordinates of the local minimum are $(2, \; -3)$

.

#### Example 2

Find the coordinates and nature of the stationary point in the function $f(x) = -x^3 +6x^2 - 12x + 11$

**Solution**

… … $f(x) = -x^3 + 6x^2 - 12x + 11$

… … $f'(x) = -3x^2 + 12x - 12$

.

… … Let $f'(x) = 0$

… … $-3x^2 + 12x - 12 = 0$

… … $-3 (x - 2)^2 = 0$

… … … $x - 2 = 0$

… … … $x = 2$

.

… … When $x = 2, \; y = 3$

.

… … Gradient table for $x = 2$

… … Therefore $(2, \; 3)$ is a **stationary point of inflection**

- Notice that this stationary point of inflection occurs
- because the gradient function has a turning point located on the x-axis

.

## Locating Turning Points with your Calculator

Your Classpad calculator makes it easy to find the turning points on a graph.

- Graph the function in the
**Graphs-Tables**section - Make sure the window is sized so that the turning points are visible
- click on the
**Max**or**Min**icon in the toolbar above the graph.- You may need to slide the toolbar to the right to see these two icons

**Max**and**Min**commands are also in the Analysis Menu, G-Solve Submenu- use the side arrows of your physical keypad to move between maximums (or minimums)

.

OR

- Use the
**solve**function in the**Main**section of the calculator - Then you will need to determine the nature of each stationary point found

.

#### Example 3

Find the maximum point in $y = \sin(x), \;\; x \in [0, \; \pi ]$

**Solution**

… … From the calculator,

… … The local maximum is found to be $(1.571, \; 1)$

… … To get the exact value, you would need to use Main:

… … In the Main section of the calculator:

… … Solve the equation formed by setting the derivative to zero

… … … $\dfrac{d}{dx} \Big( \sin(x) \Big) = 0$

… … … Note the calculator gives the general solution:

… … … $x = \pi n - \dfrac{\pi}{2} \; \text{ for } n \in Z$

… … … either select n = 1, for the desired value

… … … or solve using the restricted domain

… … Hence the local maximum is $\Big( \dfrac{\pi}{2}, \; 0 \Big)$

.

#### Example 4

Sketch $y = 2x^3 - 5x^2 + 7$,

Label all axial intercepts and stationary points

**Solution**

… **i)** … Find the stationary points.

… … … $y = 2x^3 - 5x^2 + 7$

… … … $\dfrac{dy}{dx}=6x^2-10x$

… … … Let $\dfrac{dy}{dx}=0$

… … … $6x^2-10x=0$

… … … $2x(3x-5)=0$

… … … $x=0 \quad \textit{or} \quad x=\dfrac{5}{3}$

.

… … … When $x = 0, \; y = 7$

… … … When $x=\dfrac{5}{3}, \; y=\dfrac{64}{27}$

.

… **ii)** … Determine the nature of the stationary points.

… … … Gradient Table for $x = 0, \; \text{ and } \; x = \dfrac{5}{3}$

… … … Therefore, $(0, \; 7)$ is a **local maximum** turning point,

… … … and $\big( \dfrac{5}{3}, \; \dfrac{64}{27} \big)$ is a **local minimum** turning point.

.

… **iii)** … Find axial intercepts:

… … … When $x = 0, \; y = 7$,

… … … the y-intercept is $(0, \; 7)$.

.

… … … When $y = 0$,

… … … $2x^3 - 5x^2 + 7 = 0$

… … … $(x + 1)\big(2x^2 - 7x + 7\big) = 0$

… … … $x + 1 = 0 \qquad or \qquad 2x^2 - 7x + 7 = 0$

… … … $x = -1$ … … the quadratic term has no real solutions

… … … hence $(-1, \; 0)$ is the only x-intercept.

.

… **iv)** … Sketch Graph

.